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Abstract—Software reliability models are very useful to 
estimate the probability of the software fail along the time. 
Several different models have been proposed to predict the 
software reliability growth (SRGM); however, none of them 
has proven to perform well considering different project 
characteristics. The ability to predict the number of faults in 
the software during development and testing processes. In this 
paper, we explore Genetic Algorithms (GA) as an alternative 
approach to derive these models. GA is a powerful machine 
learning technique and optimization techniques to estimate the 
parameters of well known reliably growth models. Moreover, 
machine learning algorithms, proposed the solution overcome 
the uncertainties in the modeling by combining multiple 
models using multiple objective function to achieve the best 
generalization performance where. The objectives are 
conflicting and no design exists which can be considered best 
with respect to all objectives. In this paper, experiments were 
conducted to confirm these hypotheses. Then evaluating the 
predictive capability of the ensemble of models optimized 
using multi-objective GA has been calculated. Finally, the 
results were compared with traditional models. 

I. INTRODUCTION 
Reliability in the general engineering sense is the 

probability. It gives component or system in a define 
environment will operate correctly for a specified period of 
time. Since the software systems permeate every corner of 
modern life, and any failure of those systems impacts us. An 
important issue in developing such software systems is to 
produce high quality software system that satisfies user 
requirements. As part of the software engineering process, 
developers attempt to gauge the reliability of their software, 
and compare the current level of reliability with the past 
history of that software. If a software system is experiencing 
fewer failures as time goes on. The reliability of that system 
is said to be growing. Answering two questions of when the 
software should be shipped, and what its reliability will be 
at that time are based on the use of software reliability 
models. The basic assumption in software reliability 
modeling is that software failures are the result of a 
stochastic process, having an unknown probability 
distribution. Software reliability models specify some 
reasonable form for this distribution, and are fitted to data 
from a software project. Once a model demonstrates a good 
fit to the available data, it can be used to determine the 
current reliability of the software, and predict the reliability 
of the software at future times. The problem is that software 
systems are so complex such that software engineers are not 

currently able to test software well enough to insure its 
correct operation. This may be due to the assumptions made 
by various software reliability models, or due to there is 
dependence among successive software runs. The stochastic 
dependence of successive software runs also depends on the 
extent to which internal state of software has been affected 
and on the nature of operations undertaken for execution 
resumption. Addressing these problems is: 
 

1. By finding mechanisms or relationships to more 
accurately determine the quality of software systems, 
without visiting a large fraction of their possible 
states.  

2. Taking in consideration the failure correlation and; 
3. Considering there is no single model sufficiently 

trustworthy in most or all applications  
 

Recently many ways of using parametric models, 
nonlinear time series analysis and data mining to model 
software reliability and quality have been investigated. 
These investigations point the way towards using 
computational intelligence technologies to support human 
developers in creating software systems by exploiting the 
different forms of uncertainty present in a software system 
results from infrequent and unpredictable occurrence of 
human errors and incomplete or imprecise data, in order to 
model complex systems and support decision making in 
uncertain environments [22]. These computational 
intelligence methods are evolving collections of 
methodologies, which adopt tolerance for imprecision, 
uncertainty, and partial truth to obtain robustness, 
tractability, and low cost. Fuzzy logic, neural networks, 
genetic algorithm, genetic programming and evolutionary 
computation are the most important key methodologies.  
 

In this paper, genetic-based approach as one of the 
computational intelligence techniques is followed in 
predicting software reliability by predicting the faults 
during the software testing process using software faults 
historical data. Moreover, a multi-objective genetic 
algorithm is applied to solve the three problems listed 
previously by incorporating the possible dependence among 
successive software run and use ensemble of forecasting 
models by developing methods for estimating the model(s) 
parameters with multiple and competing objectives, through 
the framework of GA optimizing.  
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Detailed results are provided to explore the advantages 
of using GA in solving this problem. The rest of the paper is 
organized in the following manner. In Section 2, a brief 
review of the works carried out in the area of software 
reliability prediction in research is presented. In Section 3, 
the genetic algorithms that will be applied in this paper are 
described briefly. In section 4 and 5, we provide an 
overview of various SRGM and the data set which we will 
be used in this paper. Detailed experiments results are 
provided in section 6. Finally, Section 7 concludes the 
paper. 

II. RELATED WORK 
Computationally intelligent technologies find its use 

software engineering because its focus on system modeling 
and decision making in the presence of uncertainty. In the 
last years many research studies has been carried out in this 
area of software reliability modeling and forecasting. They 
included the application of neural networks, fuzzy logic 
models; Genetic algorithms (GA) based neural networks, 
recurrent neural networks, particle swarm optimization 
(PSO), Bayesian neural networks, and support vector 
machine (SVM) based techniques [12].  Cai et al. [11] 
advocated the development of fuzzy software reliability 
models in place of probabilistic software reliability models 
(PSRMs). Their argument was based on the proof that 
software reliability is fuzzy in nature. A demonstration of 
how to develop a fuzzy model to characterize software 
reliability was also presented. Karunanithi et al. [18] carried 
out a detailed study to explain the use of connectionist 
models in software reliability growth prediction. It was 
shown through empirical results that the connectionist 
models adapt well across different datasets and exhibit 
better predictive accuracy than the well-known analytical 
software reliability growth models. Aljahdali et al. [20, 21], 
made contributions to software reliability growth prediction 
using neural networks by predicting accumulated faults in a 
determined time interval. They use a feed forward neural 
network in which the number of neurons in the input layer 
represents the number of delay in the input data. For the 
experiment, they used 4 delays: 1−iβ , 2−iβ , 3−iβ  and 4−iβ , 
representing the number of failures observed in the previous 
days before iβ . Ho et al. [25] performed a comprehensive 
study of connectionist models and their applicability to 
software reliability prediction and found them to be better 
and more flexible than the traditional models. A 
comparative study was performed between their proposed 
modified Elman recurrent neural network, with the more 
popular feed forward neural network, the Jordan recurrent 
model, and some traditional software reliability growth 
models. Numerical results show that the proposed network 
architecture performed better than the other models in terms 
of predictions. Despite of the recent advancements in the 
software reliability growth models, it was observed that 
different models have different predictive capabilities and 
also no single model is suitable under all circumstances. 
Tian and Noore [14] proposed an on-line adaptive software 
reliability prediction model using evolutionary 

connectionist approach based on multiple-delayed-input 
single-output architecture. The proposed approach, as 
shown by their results, had a better performance with 
respect to next-step predictability compared to existing 
neural network model for failure time prediction. Tian and 
Noore [13] proposed an evolutionary neural network 
modeling approach for software cumulative failure time 
prediction. Their results were found to be better than the 
existing neural network models. It was also shown that the 
neural network architecture has a great impact on the 
performance of the network. Pai and Hong [19] have 
applied support vector machines (SVMs) for forecasting 
software reliability where simulated annealing (SA) 
algorithm was used to select the parameters of the SVM 
model. The experimental results show that the proposed 
model gave better predictions than the other compared 
methods. Su and Huang [27] showed how to apply neural 
networks to predict software reliability. Further they made 
use of the neural network approach to build a dynamic 
weighted combinational model (DWCM) and experimental 
results show that the proposed model gave significantly 
better predictions. Oliveira et al. [5, 6] proposed the using 
of genetic programming (GP) to obtain software reliability 
model for forecasting the reliability and extended this work 
by boosting the GP algorithm using re-weighting. The re-
weighting algorithm calls many times the learning 
algorithm with assigned weights to each example. Each 
time, the weights are computed according to the error (or 
loss) on each example in the learning algorithm. In this way, 
the learning algorithm is manipulated to look closer at 
examples with bad prediction functions. Sheta [1] uses 
genetic algorithms to estimate the COCOMO model 
parameters for NASA Software Projects. The same idea is 
implemented for estimating the parameters of different 
SRGM models using PSO [2]. In this paper, we explore the 
use of GA to predict the faults during the software testing 
process using software faults historical data. Detailed results 
are provided to explore the advantages of using GA in 
solving this problem. 

III. GENETIC ALGORITHMS 
Genetic algorithms are machine learning and 

optimization schemes, much like neural networks. 
However, genetic algorithms do not appear to suffer from 
local minima as badly as neural networks do. Genetic 
algorithms are based on the model of evolution, in which a 
population evolves towards overall fitness, even though 
individuals perish. Evolution dictates that superior 
individuals have a better chance of reproducing than inferior 
individuals, and thus are more likely to pass their superior 
traits on to the next generation. This “survival of the fittest” 
criterion was first converted to an optimization algorithm by 
Holland in 1975 [7], and is today a major optimization 
technique for complex, nonlinear problems. In a genetic 
algorithm, each individual of a population is one possible 
solution to an optimization problem, encoded as a binary 
string called a chromosome. A group of these individuals 
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will be generated, and will compete for the right to 
reproduce or even be carried over into the next generation 
of the population. Competition consists of applying a fitness 
function to every individual in the population; the 
individuals with the best result are the fittest. The next 
generation will then be constructed by carrying over a few 
of the best individuals, reproduction, and mutation. 
Reproduction is carried out by a “crossover” operation, 
similar to what happens in an animal embryo. Two 
chromosomes exchange portions of their code, thus forming 
a pair of new individuals. In the simplest form of crossover, 
a crossover point on the two chromosomes is selected at 
random, and the chromosomes exchange all data after that 
point, while keeping their own data up to that point. In order 
to introduce additional variation in the population, a 
mutation operator will randomly change a bit or bits in 
some chromosome(s). Usually, the mutation rate is kept low 
to permit good solutions to remain stable. The two most 
critical elements of a genetic algorithm are the way 
solutions are represented, and the fitness function, both of 
which are problem-dependent. The coding for a solution 
must be designed to represent a possibly complicated idea 
or sequence of steps. The fitness function must not only 
interpret the encoding of solutions, but also must establish a 
ranking of different solutions. The fitness function is what 
will drive the entire population of solutions towards a 
globally best [4].  
 

 
FIGURE I. CANONICAL GENETIC ALGORITHM 

Figure 1 illustrates the basic steps in the canonical 
genetic algorithms. Most GAs has been used for single 
objective problems, although several multi-objective 

approaches have been proposed. There are three different 
approaches to cope with multi-objective problems, namely: 
1) transforming the original multi-objective problem into a 
single objective problem by using a weighted function, 2) 
the lexicographical approach, where the objectives are 
ranked in order of priority, and 3) the Pareto approach 
which consists of as many non-dominated solutions as 
possible and returning the set of Pareto front to the user. 
The main conclusions are that the weighted formula 
approach, which is by far the most used in the data mining 
literature, is an ad-hoc approach for multi-objective 
optimization, whereas the lexicographic and the Pareto 
approaches are more principled approaches, and therefore 
deserved more attention from the computer science 
community [16].  

IV. PREDICTING MODELS 
In the past three decades, hundreds of models were 

introduced to estimate the reliability of software systems 
[15, 24]. The issue of building growth models was the 
subject of many research works [8] which helps in 
estimating the reliability of a software system before its 
release to the market. There appear to be three major trends 
in software reliability research: the use of Non-
Homogeneous Poisson Process (NHPP) models, Bayesian 
inference, and time series analysis. An NHPP is a Poisson 
process with a time-varying mean value function. Bayesian 
inference in software reliability models essentially consists 
of treating the parameters of a reliability model as random 
variables instead of constants to be estimated. Some 
reasonable prior distributions are assumed for these 
parameters, and Bayes’ theorem is then invoked to 
determine the posterior distributions using reliability data. 
Finally, time series analysis uses an auto-regressive process 
and an auto-regressive integrated moving average (ARIMA) 
model. In addition to these three large-scale trends, there are 
many other proposing software reliability models that are 
somewhat unique. In this paper, the auto-regression models 
are adopted. 
A. Regression Model 

A time series is a time-ordered sequence of observation 
values of a physical or financial variable made at equally 
spaced time intervals tΔ , represented as a set of discrete 
values , , ,…, etc. Time series analysis deals with 
the problems of identification of basic characteristic 
features of time series, as well as with discovering - from 
the observation data on which the time series is built - the 
internal time series structure to predict time series data 
values which help in deciding about the subsequent actions 
to be taken. One of most used times series models is the 
auto regression model. Much of the appeal of this technique 
lies with its simplicity and also its easy accessibility from 
many of the popular statistical packages. The AR model can 
be described by the following equation: 

1x 2x 3x

 

∑+=
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where  is the previous observed number of faults and 

. The value of n is referred to as the "order" of 
the model, 

ijy −

( ni ,,2,1 K= )
0ω  and ( nii ,,2,1 , K= )ω are the model parameter. 

B. Multiple Regression Model 
Stochastic uncertainty that arises because faults occur 

during the software testing process can behave in many 
different unpredictable ways and is thus a property of 
reality. Reducing reality into a model inevitably results in 
an error, reflecting the discrepancies between the reality 
portion of interest and its model representation. These errors 
can be associated with the structure of the model stemming 
from simplifications, assumption and approximations or due 
to uncertainties in the values assumed by the model 
parameters or due to errors in the measurement process 
itself. This error can be viewed as a measure of how good a 
model is in representing reality. Machine learning 
algorithms, proposed the solution by combining multiple 
models, we are aiming at a more accurate prediction at the 
expense of increased uncertainty [26]. The fusion approach, 
that will be applied combine such as the average predictions 
of multiple models. Mathematically, the ensemble models 
can be described by the following equation: 
 

( )jjjj SMy ,Ω=  (2)
 
where  is the prediction of the model about a reality 
aspect of interest,  represents the model’s structure 
reflecting a set of assumptions and simplifications encoded 
into the mathematical model , and 

jy

jS

jM ( )K,,, 310 ωωω=Ω j  is 
a finite set of model parameters. In a general case of a 
discrete set of n models , each model Ψ

( ) njSM jjj ,,2,1 ,, K=Ω  represents an alternate form of  

with given set of parameters . Each model in the set 
jS

jΩ Ψ  
provides an estimate about the quantity of interest  in the 
form of a predictive probability 
distribution

jy

( ) ( )jj SyPMjyP ,|| Ω= . The literature on 
combining methods is very reach and diverse, among the 
methods: the simple averaging (equal weights) and the 
weighted average [23]. In this study, the combination 
function υ is implemented both the schemes, equation 3, 
represent the average predictions of multiple models and 
equation 4, represent the weighted average predictions of 
multiple models. 
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V. PROBLEM FORMULATION 
The standard method of performing time series prediction 

problem can be formulated within the supervised machine 
learning frameworks as the following two cases:  
 

Case 1: Given a set of examples, m ( ){ }mitu ii ,,1  ,, K=  
where ( ) ituf ii ∀= , , return a function g that approximates 

in the sense that the norm of the error vector f
( )meeE ,..,1=  is minimized, where each  is defined as ie

( )( )iii tugqe ,=  and is an arbitrary error 
function.  

∑= =
m
i iqQ 1

 
Case 2: Given a set of examples, m ( ){ }mitu ii ,,1  ,, K=  
where ( ) ituf ii ∀= , , return functions ( ) itug jiij ∀= , that its 

combination function ( ) ( )( K,, 21 iii ugugt )υ=  approximates 
in the sense that the norm of the error vector f
( )meeE ,..,1=  is minimized, where each  is defined as ie

( ) ( )( )( )iiii tugugqe ,,, 21 Kυ=  and is an 
arbitrary error function.  

∑= =
m
i iqQ 1

 
The parameters of any model can be thought as the genes 

vector or sub-vector of the chromosome in the GA. The 
parameters of each chromosome vector are initialized 
randomly and are evolved using GA algorithm. The fitness 
function  that determines the quality of population 
members is a multi-objective function that optimizing 
several performance index: The value of normalized root 
mean square error (NRMSE) and Correlation Coefficient 
( ) between the observed and forecasted failures. The 
correlation coefficient,  measures the percentage of 
variation in the dependent variable that is explained by the 
regression or trend line. It has a value between zero and 
one, with a high value indicating a good fit. 

Q
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The objective is to carefully ensemble the different 
forecasting models to achieve the best generalization 
performance. This task is to have minimal values of 
NRMSE and a maximum value for . This problem is 
equivalent to finding the Pareto solutions of a multi-
objective optimization problem. A Pareto-optimal solution 
has the property that it is not possible to reduce any of the 
objective functions without increasing at least one of the 
other objective functions. The most straightforward 
approach to multi-objective optimization is combine all the 
objectives into a single one using either an addition, 
multiplication or any other combination of arithmetical 
operations that we could devise. Where  

2R

296



 5

RMSE
RQ

2
=  (7)

This approach is not computationally intensive and results 
in a single best solution based on the assigned weights. 

VI. EXPERIMENTS RESULTS 
This section describes the data used and the 

measurements adopted to evaluate the obtained GA model. 
We also present the main steps followed to configure the 
GA algorithm. This experiment explored GA models based 
on time. This is easily achieved with an appropriate terminal 
set. This terminal set is compound by past accumulated 
failures. 
A. Software Reliability Data Set 

John Musa of Bell Telephone Laboratories compiled a 
software reliability database [9]. His objective was to 
collect failure interval data to assist software managers in 
monitoring test status, predicting schedules and to assist 
software researchers in validating software reliability 
models. These models are applied in the discipline of 
software reliability engineering. The dataset consists of 
software failure data on 16 projects. Careful controls were 
employed during data collection to ensure that the data 
would be of high quality. The data was collected throughout 
the mid 1970s. It represents projects from a variety of 
applications including real time command and control, word 
processing, commercial, and military applications. The 
failure data consists of: project identification, failure 
number; time between failures (TBF), and day of 
occurrence. In our case, we used data from three projects. 
They are Military, Real Time Control and Operating 
System. 
B. Regression Models Structures and Training 

The architecture of the regression model used for 
prediction the software reliability is modeled as in Equation 
1; with . For multiple models we combine the three 
models with . The chosen orders of AR models are 
simples to implement the principles of parsimony. The 
genetic algorithms are learned to estimate the models 
parameters and their combining weights. The trainings 
accomplish by dividing the data set into two sections, 
training and test sets, comprising of 70% and 30% of the 
total data set respectively. So, we took the first 70, 96 and 
194 data points for training in each project respectively, the 
next 30, 40 and 83 points for validation and test. The GA 
training algorithms are conducted several pre-experiments 
to determine the parameters setting per algorithm that yields 
the best performance with respect to the dataset. These 
parameters are values are shown in Table 1. 

4=n
3,2,1=n

C. Experimental Evaluation 
The training data from real time control and their 

predicted results from different model are shown in Figures 
2 and the predicted squared error in Figure 3. The 
forecasted and actually measured values where compared to 
verify the generated models by GA learning algorithm. 

From this figure it can be observed that the weighted 
average ensemble of models forecast more closely to the 
actual values than other modeling methodologies in most of 
the testing time period. The results of runs on this case 
study training data set summarized in Table 2 in terms of 
multi-objective function. According to results shown in 
Table 2; the ensemble of models are better than the single 
model and the variation between the weighted average and 
average combination of ensemble is minor. The above 
results show that AR ensemble models performance can be 
very dependent on the ability of optimization algorithms to 
find a good set of parameters. The better performance can 
be illustrated by showing the learning curves of the 
parameters of the proposed methodology as shown in 
Figures 4. 

TABLE I.  THE GA PARAMETERS USED IN THIS STUDY 

Parameter Value 
Population Size 25 
Number of generations 2000 
Crossover rate 0.6 
Mutation rate 0.05 
Selection method tournament selection 
 

TABLE II.  THE COMPARISON AMONG SINGLE AND ENSEMBLE OF 
MODELS LEARNED USING GA FOR TRAINING DATA SET 

Training Data Set   
NRMSE R2

single model 3.87e-6 0.93 
average ensemble 3.46e-6 0.99 
weighted average ensemble 3.44e-6 0.99 
 

TABLE III.  THE COMPARISON AMONG SINGLE AND ENSEMBLE OF 
MODELS LEARNED USING GA FOR TESTING DATA SET 

Testing Data Set   
NRMSE R2

single model 4.11e-6 0.97 
average ensemble 2.79e-6 0.98 
weighted average ensemble 2.66e-6 1.00 
 
The test data from real time control and their predicted 
results from different model are shown in Figures 5 and the 
predicted squared error in Figure 6.  The results of runs on 
this case study test data set summarized in Table 3, 
according to results shown in Table 3; the productivity of 
ensemble of models are better than the single model and the 
variation between the weighted average and average 
combination of ensemble is minor. Comparing these results 
with a pervious work, that implemented the genetic 
algorithms with single objective function [2], we found that 
the performance is enhanced as summarized in Table 4.  

TABLE IV.  THE COMPARISON AMONG SINGLE AND MULTIPLE 
OBJECTIVE FUNCTIONS FOR TRAINING DATA SET USING NRMSE VALUE 

Training Data Set   
multiple objective single objective 

single model 4.11e-6 7.61E-06 
average ensemble 2.79e-6 5.57E-06 
weighted average ensemble 2.66e-6 5.57E-06 
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VII. CONCLUSIONS AND FUTURE WORKS 
In this work, we have measured the predictability of 

software reliability using ensemble of models trained using 
GA. The study is applied on three study sets; Military, Real 
Time Control and Operating System. As far as the 
predictability of the single AR model and ensemble of AR 
models trained by GA algorithm over the trained and test 
data is concerned, the ensemble of models performed better 
the single model. Also, we find that the weighted average 
combining method for ensemble has a better performance in 
a comparison with average method. This due to the GA 
learned weights which decide the contribution of each 
model in the final results. However these models are linear 
in the future, we plan to use non-liner models like neural 
networks and other form of ensemble combinations. 
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FIGURE II. ACTUAL AND ESTIMATED FAULTS FOR REAL TIME AND CONTROL APPLICATION 

 

 
FIGURE III. PREDICTION ERROR FOR REAL TIME AND CONTROL APPLICATION TRAINING SET 

 

 
FIGURE IV. LEARNING RATE OF GA FOR REAL TIME AND CONTROL APPLICATION 
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FIGURE V. ACTUAL AND ESTIMATED FAULTS FOR REAL TIME AND CONTROL APPLICATION TEST SET 

 

 
FIGURE VI. PREDICTION ERROR FOR REAL TIME AND CONTROL APPLICATION TEST SET 
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