
 1

Software Reliability Prediction Using Multi-
Objective Genetic Algorithm

Sultan H. Aljahdali Mohammed E. El-Telbany
Computer Sciences Department, Al-Taif University Computers Engineering Department, Al-Taif University

Al-Taif -SAUDI ARABIA Al-Taif -SAUDI ARABIA
aljahdali@tu.edu.sa telbany@eri.sci.eg

Abstract—Software reliability models are very useful to
estimate the probability of the software fail along the time.
Several different models have been proposed to predict the
software reliability growth (SRGM); however, none of them
has proven to perform well considering different project
characteristics. The ability to predict the number of faults in
the software during development and testing processes. In this
paper, we explore Genetic Algorithms (GA) as an alternative
approach to derive these models. GA is a powerful machine
learning technique and optimization techniques to estimate the
parameters of well known reliably growth models. Moreover,
machine learning algorithms, proposed the solution overcome
the uncertainties in the modeling by combining multiple
models using multiple objective function to achieve the best
generalization performance where. The objectives are
conflicting and no design exists which can be considered best
with respect to all objectives. In this paper, experiments were
conducted to confirm these hypotheses. Then evaluating the
predictive capability of the ensemble of models optimized
using multi-objective GA has been calculated. Finally, the
results were compared with traditional models.

I. INTRODUCTION
Reliability in the general engineering sense is the

probability. It gives component or system in a define
environment will operate correctly for a specified period of
time. Since the software systems permeate every corner of
modern life, and any failure of those systems impacts us. An
important issue in developing such software systems is to
produce high quality software system that satisfies user
requirements. As part of the software engineering process,
developers attempt to gauge the reliability of their software,
and compare the current level of reliability with the past
history of that software. If a software system is experiencing
fewer failures as time goes on. The reliability of that system
is said to be growing. Answering two questions of when the
software should be shipped, and what its reliability will be
at that time are based on the use of software reliability
models. The basic assumption in software reliability
modeling is that software failures are the result of a
stochastic process, having an unknown probability
distribution. Software reliability models specify some
reasonable form for this distribution, and are fitted to data
from a software project. Once a model demonstrates a good
fit to the available data, it can be used to determine the
current reliability of the software, and predict the reliability
of the software at future times. The problem is that software
systems are so complex such that software engineers are not

currently able to test software well enough to insure its
correct operation. This may be due to the assumptions made
by various software reliability models, or due to there is
dependence among successive software runs. The stochastic
dependence of successive software runs also depends on the
extent to which internal state of software has been affected
and on the nature of operations undertaken for execution
resumption. Addressing these problems is:

1. By finding mechanisms or relationships to more
accurately determine the quality of software systems,
without visiting a large fraction of their possible
states.

2. Taking in consideration the failure correlation and;
3. Considering there is no single model sufficiently

trustworthy in most or all applications

Recently many ways of using parametric models,
nonlinear time series analysis and data mining to model
software reliability and quality have been investigated.
These investigations point the way towards using
computational intelligence technologies to support human
developers in creating software systems by exploiting the
different forms of uncertainty present in a software system
results from infrequent and unpredictable occurrence of
human errors and incomplete or imprecise data, in order to
model complex systems and support decision making in
uncertain environments [22]. These computational
intelligence methods are evolving collections of
methodologies, which adopt tolerance for imprecision,
uncertainty, and partial truth to obtain robustness,
tractability, and low cost. Fuzzy logic, neural networks,
genetic algorithm, genetic programming and evolutionary
computation are the most important key methodologies.

In this paper, genetic-based approach as one of the
computational intelligence techniques is followed in
predicting software reliability by predicting the faults
during the software testing process using software faults
historical data. Moreover, a multi-objective genetic
algorithm is applied to solve the three problems listed
previously by incorporating the possible dependence among
successive software run and use ensemble of forecasting
models by developing methods for estimating the model(s)
parameters with multiple and competing objectives, through
the framework of GA optimizing.

978-1-4244-3806-8/09/$25.00 © 2009 IEEE 293

 2

Detailed results are provided to explore the advantages
of using GA in solving this problem. The rest of the paper is
organized in the following manner. In Section 2, a brief
review of the works carried out in the area of software
reliability prediction in research is presented. In Section 3,
the genetic algorithms that will be applied in this paper are
described briefly. In section 4 and 5, we provide an
overview of various SRGM and the data set which we will
be used in this paper. Detailed experiments results are
provided in section 6. Finally, Section 7 concludes the
paper.

II. RELATED WORK
Computationally intelligent technologies find its use

software engineering because its focus on system modeling
and decision making in the presence of uncertainty. In the
last years many research studies has been carried out in this
area of software reliability modeling and forecasting. They
included the application of neural networks, fuzzy logic
models; Genetic algorithms (GA) based neural networks,
recurrent neural networks, particle swarm optimization
(PSO), Bayesian neural networks, and support vector
machine (SVM) based techniques [12]. Cai et al. [11]
advocated the development of fuzzy software reliability
models in place of probabilistic software reliability models
(PSRMs). Their argument was based on the proof that
software reliability is fuzzy in nature. A demonstration of
how to develop a fuzzy model to characterize software
reliability was also presented. Karunanithi et al. [18] carried
out a detailed study to explain the use of connectionist
models in software reliability growth prediction. It was
shown through empirical results that the connectionist
models adapt well across different datasets and exhibit
better predictive accuracy than the well-known analytical
software reliability growth models. Aljahdali et al. [20, 21],
made contributions to software reliability growth prediction
using neural networks by predicting accumulated faults in a
determined time interval. They use a feed forward neural
network in which the number of neurons in the input layer
represents the number of delay in the input data. For the
experiment, they used 4 delays: 1−iβ , 2−iβ , 3−iβ and 4−iβ ,
representing the number of failures observed in the previous
days before iβ . Ho et al. [25] performed a comprehensive
study of connectionist models and their applicability to
software reliability prediction and found them to be better
and more flexible than the traditional models. A
comparative study was performed between their proposed
modified Elman recurrent neural network, with the more
popular feed forward neural network, the Jordan recurrent
model, and some traditional software reliability growth
models. Numerical results show that the proposed network
architecture performed better than the other models in terms
of predictions. Despite of the recent advancements in the
software reliability growth models, it was observed that
different models have different predictive capabilities and
also no single model is suitable under all circumstances.
Tian and Noore [14] proposed an on-line adaptive software
reliability prediction model using evolutionary

connectionist approach based on multiple-delayed-input
single-output architecture. The proposed approach, as
shown by their results, had a better performance with
respect to next-step predictability compared to existing
neural network model for failure time prediction. Tian and
Noore [13] proposed an evolutionary neural network
modeling approach for software cumulative failure time
prediction. Their results were found to be better than the
existing neural network models. It was also shown that the
neural network architecture has a great impact on the
performance of the network. Pai and Hong [19] have
applied support vector machines (SVMs) for forecasting
software reliability where simulated annealing (SA)
algorithm was used to select the parameters of the SVM
model. The experimental results show that the proposed
model gave better predictions than the other compared
methods. Su and Huang [27] showed how to apply neural
networks to predict software reliability. Further they made
use of the neural network approach to build a dynamic
weighted combinational model (DWCM) and experimental
results show that the proposed model gave significantly
better predictions. Oliveira et al. [5, 6] proposed the using
of genetic programming (GP) to obtain software reliability
model for forecasting the reliability and extended this work
by boosting the GP algorithm using re-weighting. The re-
weighting algorithm calls many times the learning
algorithm with assigned weights to each example. Each
time, the weights are computed according to the error (or
loss) on each example in the learning algorithm. In this way,
the learning algorithm is manipulated to look closer at
examples with bad prediction functions. Sheta [1] uses
genetic algorithms to estimate the COCOMO model
parameters for NASA Software Projects. The same idea is
implemented for estimating the parameters of different
SRGM models using PSO [2]. In this paper, we explore the
use of GA to predict the faults during the software testing
process using software faults historical data. Detailed results
are provided to explore the advantages of using GA in
solving this problem.

III. GENETIC ALGORITHMS
Genetic algorithms are machine learning and

optimization schemes, much like neural networks.
However, genetic algorithms do not appear to suffer from
local minima as badly as neural networks do. Genetic
algorithms are based on the model of evolution, in which a
population evolves towards overall fitness, even though
individuals perish. Evolution dictates that superior
individuals have a better chance of reproducing than inferior
individuals, and thus are more likely to pass their superior
traits on to the next generation. This “survival of the fittest”
criterion was first converted to an optimization algorithm by
Holland in 1975 [7], and is today a major optimization
technique for complex, nonlinear problems. In a genetic
algorithm, each individual of a population is one possible
solution to an optimization problem, encoded as a binary
string called a chromosome. A group of these individuals

294

 3

will be generated, and will compete for the right to
reproduce or even be carried over into the next generation
of the population. Competition consists of applying a fitness
function to every individual in the population; the
individuals with the best result are the fittest. The next
generation will then be constructed by carrying over a few
of the best individuals, reproduction, and mutation.
Reproduction is carried out by a “crossover” operation,
similar to what happens in an animal embryo. Two
chromosomes exchange portions of their code, thus forming
a pair of new individuals. In the simplest form of crossover,
a crossover point on the two chromosomes is selected at
random, and the chromosomes exchange all data after that
point, while keeping their own data up to that point. In order
to introduce additional variation in the population, a
mutation operator will randomly change a bit or bits in
some chromosome(s). Usually, the mutation rate is kept low
to permit good solutions to remain stable. The two most
critical elements of a genetic algorithm are the way
solutions are represented, and the fitness function, both of
which are problem-dependent. The coding for a solution
must be designed to represent a possibly complicated idea
or sequence of steps. The fitness function must not only
interpret the encoding of solutions, but also must establish a
ranking of different solutions. The fitness function is what
will drive the entire population of solutions towards a
globally best [4].

FIGURE I. CANONICAL GENETIC ALGORITHM

Figure 1 illustrates the basic steps in the canonical
genetic algorithms. Most GAs has been used for single
objective problems, although several multi-objective

approaches have been proposed. There are three different
approaches to cope with multi-objective problems, namely:
1) transforming the original multi-objective problem into a
single objective problem by using a weighted function, 2)
the lexicographical approach, where the objectives are
ranked in order of priority, and 3) the Pareto approach
which consists of as many non-dominated solutions as
possible and returning the set of Pareto front to the user.
The main conclusions are that the weighted formula
approach, which is by far the most used in the data mining
literature, is an ad-hoc approach for multi-objective
optimization, whereas the lexicographic and the Pareto
approaches are more principled approaches, and therefore
deserved more attention from the computer science
community [16].

IV. PREDICTING MODELS
In the past three decades, hundreds of models were

introduced to estimate the reliability of software systems
[15, 24]. The issue of building growth models was the
subject of many research works [8] which helps in
estimating the reliability of a software system before its
release to the market. There appear to be three major trends
in software reliability research: the use of Non-
Homogeneous Poisson Process (NHPP) models, Bayesian
inference, and time series analysis. An NHPP is a Poisson
process with a time-varying mean value function. Bayesian
inference in software reliability models essentially consists
of treating the parameters of a reliability model as random
variables instead of constants to be estimated. Some
reasonable prior distributions are assumed for these
parameters, and Bayes’ theorem is then invoked to
determine the posterior distributions using reliability data.
Finally, time series analysis uses an auto-regressive process
and an auto-regressive integrated moving average (ARIMA)
model. In addition to these three large-scale trends, there are
many other proposing software reliability models that are
somewhat unique. In this paper, the auto-regression models
are adopted.
A. Regression Model

A time series is a time-ordered sequence of observation
values of a physical or financial variable made at equally
spaced time intervals tΔ , represented as a set of discrete
values , , ,…, etc. Time series analysis deals with
the problems of identification of basic characteristic
features of time series, as well as with discovering - from
the observation data on which the time series is built - the
internal time series structure to predict time series data
values which help in deciding about the subsequent actions
to be taken. One of most used times series models is the
auto regression model. Much of the appeal of this technique
lies with its simplicity and also its easy accessibility from
many of the popular statistical packages. The AR model can
be described by the following equation:

1x 2x 3x

∑+=
=

−
n

i
ijij yy

1
0 ωω (1)

295

 4

where is the previous observed number of faults and

. The value of n is referred to as the "order" of
the model,

ijy −

(ni ,,2,1 K=)
0ω and (nii ,,2,1 , K=)ω are the model parameter.

B. Multiple Regression Model
Stochastic uncertainty that arises because faults occur

during the software testing process can behave in many
different unpredictable ways and is thus a property of
reality. Reducing reality into a model inevitably results in
an error, reflecting the discrepancies between the reality
portion of interest and its model representation. These errors
can be associated with the structure of the model stemming
from simplifications, assumption and approximations or due
to uncertainties in the values assumed by the model
parameters or due to errors in the measurement process
itself. This error can be viewed as a measure of how good a
model is in representing reality. Machine learning
algorithms, proposed the solution by combining multiple
models, we are aiming at a more accurate prediction at the
expense of increased uncertainty [26]. The fusion approach,
that will be applied combine such as the average predictions
of multiple models. Mathematically, the ensemble models
can be described by the following equation:

()jjjj SMy ,Ω= (2)

where is the prediction of the model about a reality
aspect of interest, represents the model’s structure
reflecting a set of assumptions and simplifications encoded
into the mathematical model , and

jy

jS

jM ()K,,, 310 ωωω=Ω j is
a finite set of model parameters. In a general case of a
discrete set of n models , each model Ψ

() njSM jjj ,,2,1 ,, K=Ω represents an alternate form of

with given set of parameters . Each model in the set
jS

jΩ Ψ
provides an estimate about the quantity of interest in the
form of a predictive probability
distribution

jy

() ()jj SyPMjyP ,|| Ω= . The literature on
combining methods is very reach and diverse, among the
methods: the simple averaging (equal weights) and the
weighted average [23]. In this study, the combination
function υ is implemented both the schemes, equation 3,
represent the average predictions of multiple models and
equation 4, represent the weighted average predictions of
multiple models.

∑=
=

n

j
jy

n
y

1

1 (3)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

=

n

j
jj yw

n
y

1

1 (4)

V. PROBLEM FORMULATION
The standard method of performing time series prediction

problem can be formulated within the supervised machine
learning frameworks as the following two cases:

Case 1: Given a set of examples, m (){ }mitu ii ,,1 ,, K=
where () ituf ii ∀= , , return a function g that approximates

in the sense that the norm of the error vector f
()meeE ,..,1= is minimized, where each is defined as ie

()()iii tugqe ,= and is an arbitrary error
function.

∑= =
m
i iqQ 1

Case 2: Given a set of examples, m (){ }mitu ii ,,1 ,, K=
where () ituf ii ∀= , , return functions () itug jiij ∀= , that its

combination function () ()(K,, 21 iii ugugt)υ= approximates
in the sense that the norm of the error vector f
()meeE ,..,1= is minimized, where each is defined as ie

() ()()()iiii tugugqe ,,, 21 Kυ= and is an
arbitrary error function.

∑= =
m
i iqQ 1

The parameters of any model can be thought as the genes

vector or sub-vector of the chromosome in the GA. The
parameters of each chromosome vector are initialized
randomly and are evolved using GA algorithm. The fitness
function that determines the quality of population
members is a multi-objective function that optimizing
several performance index: The value of normalized root
mean square error (NRMSE) and Correlation Coefficient
() between the observed and forecasted failures. The
correlation coefficient, measures the percentage of
variation in the dependent variable that is explained by the
regression or trend line. It has a value between zero and
one, with a high value indicating a good fit.

Q

2R
2R

() ()()()

()∑

∑

−

−

=
m

j
j

m

j
jj

yy

yugug
R

2

2
21

2

,, Kυ

 (6)

The objective is to carefully ensemble the different
forecasting models to achieve the best generalization
performance. This task is to have minimal values of
NRMSE and a maximum value for . This problem is
equivalent to finding the Pareto solutions of a multi-
objective optimization problem. A Pareto-optimal solution
has the property that it is not possible to reduce any of the
objective functions without increasing at least one of the
other objective functions. The most straightforward
approach to multi-objective optimization is combine all the
objectives into a single one using either an addition,
multiplication or any other combination of arithmetical
operations that we could devise. Where

2R

296

 5

RMSE
RQ

2
= (7)

This approach is not computationally intensive and results
in a single best solution based on the assigned weights.

VI. EXPERIMENTS RESULTS
This section describes the data used and the

measurements adopted to evaluate the obtained GA model.
We also present the main steps followed to configure the
GA algorithm. This experiment explored GA models based
on time. This is easily achieved with an appropriate terminal
set. This terminal set is compound by past accumulated
failures.
A. Software Reliability Data Set

John Musa of Bell Telephone Laboratories compiled a
software reliability database [9]. His objective was to
collect failure interval data to assist software managers in
monitoring test status, predicting schedules and to assist
software researchers in validating software reliability
models. These models are applied in the discipline of
software reliability engineering. The dataset consists of
software failure data on 16 projects. Careful controls were
employed during data collection to ensure that the data
would be of high quality. The data was collected throughout
the mid 1970s. It represents projects from a variety of
applications including real time command and control, word
processing, commercial, and military applications. The
failure data consists of: project identification, failure
number; time between failures (TBF), and day of
occurrence. In our case, we used data from three projects.
They are Military, Real Time Control and Operating
System.
B. Regression Models Structures and Training

The architecture of the regression model used for
prediction the software reliability is modeled as in Equation
1; with . For multiple models we combine the three
models with . The chosen orders of AR models are
simples to implement the principles of parsimony. The
genetic algorithms are learned to estimate the models
parameters and their combining weights. The trainings
accomplish by dividing the data set into two sections,
training and test sets, comprising of 70% and 30% of the
total data set respectively. So, we took the first 70, 96 and
194 data points for training in each project respectively, the
next 30, 40 and 83 points for validation and test. The GA
training algorithms are conducted several pre-experiments
to determine the parameters setting per algorithm that yields
the best performance with respect to the dataset. These
parameters are values are shown in Table 1.

4=n
3,2,1=n

C. Experimental Evaluation
The training data from real time control and their

predicted results from different model are shown in Figures
2 and the predicted squared error in Figure 3. The
forecasted and actually measured values where compared to
verify the generated models by GA learning algorithm.

From this figure it can be observed that the weighted
average ensemble of models forecast more closely to the
actual values than other modeling methodologies in most of
the testing time period. The results of runs on this case
study training data set summarized in Table 2 in terms of
multi-objective function. According to results shown in
Table 2; the ensemble of models are better than the single
model and the variation between the weighted average and
average combination of ensemble is minor. The above
results show that AR ensemble models performance can be
very dependent on the ability of optimization algorithms to
find a good set of parameters. The better performance can
be illustrated by showing the learning curves of the
parameters of the proposed methodology as shown in
Figures 4.

TABLE I. THE GA PARAMETERS USED IN THIS STUDY

Parameter Value
Population Size 25
Number of generations 2000
Crossover rate 0.6
Mutation rate 0.05
Selection method tournament selection

TABLE II. THE COMPARISON AMONG SINGLE AND ENSEMBLE OF
MODELS LEARNED USING GA FOR TRAINING DATA SET

Training Data Set
NRMSE R2

single model 3.87e-6 0.93
average ensemble 3.46e-6 0.99
weighted average ensemble 3.44e-6 0.99

TABLE III. THE COMPARISON AMONG SINGLE AND ENSEMBLE OF
MODELS LEARNED USING GA FOR TESTING DATA SET

Testing Data Set
NRMSE R2

single model 4.11e-6 0.97
average ensemble 2.79e-6 0.98
weighted average ensemble 2.66e-6 1.00

The test data from real time control and their predicted
results from different model are shown in Figures 5 and the
predicted squared error in Figure 6. The results of runs on
this case study test data set summarized in Table 3,
according to results shown in Table 3; the productivity of
ensemble of models are better than the single model and the
variation between the weighted average and average
combination of ensemble is minor. Comparing these results
with a pervious work, that implemented the genetic
algorithms with single objective function [2], we found that
the performance is enhanced as summarized in Table 4.

TABLE IV. THE COMPARISON AMONG SINGLE AND MULTIPLE
OBJECTIVE FUNCTIONS FOR TRAINING DATA SET USING NRMSE VALUE

Training Data Set
multiple objective single objective

single model 4.11e-6 7.61E-06
average ensemble 2.79e-6 5.57E-06
weighted average ensemble 2.66e-6 5.57E-06

297

 6

VII. CONCLUSIONS AND FUTURE WORKS
In this work, we have measured the predictability of

software reliability using ensemble of models trained using
GA. The study is applied on three study sets; Military, Real
Time Control and Operating System. As far as the
predictability of the single AR model and ensemble of AR
models trained by GA algorithm over the trained and test
data is concerned, the ensemble of models performed better
the single model. Also, we find that the weighted average
combining method for ensemble has a better performance in
a comparison with average method. This due to the GA
learned weights which decide the contribution of each
model in the final results. However these models are linear
in the future, we plan to use non-liner models like neural
networks and other form of ensemble combinations.

VIII. ACKNOWLEDGEMENT
The authors would like to thank Dr. M. Maged for

reviewing this paper and her valuable comments.
IX. REFERENCES

[1]. A., Sheta, Estimation of the COCOMO model parameters
using genetic algorithms for NASA software projects, Journal
of Computer Science, USA, 2(2):118–123, 2006.

[2]. A., Sheta, Reliability growth modeling for software fault
detection using particle swarm optimization. In 2006 IEEE
Congress on Evolutionary Computation, Sheraton, Vancouver
Wall Centre, Vancouver, BC, Canada, July 16-21, pp. 10428–
10435, 2006.

[3]. C., Houck, J., Joines, and M., Kay, A Genetic Algorithm for
Function Optimization: A MATLAB Implementation, ACM
Transactions on Mathematical Software, 1996

[4]. D., Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley, Boston,
Massachusetts, 1989.

[5]. E., Oliveira, A., Pozo, and S., Vergilio, Using Boosting
Techniques to Improve Software Reliability Models Based on
Genetic Programming, in Proceedings of the 18th IEEE
International Conference on Tools with Artificial Intelligence

[6]. E., Oliveira, C., Silia, A., Pozo, and G., Souza, Modeling
Software Reliability Growth with Genetic Programming, In
Proceedings of the 16th IEEE International Symposium on
Software Reliability Engineering, 2005.

[7]. J., Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, Michigan, 1975.

[8]. J., Musa, Software Reliability Engineering: More Reliable
Software, Faster and Cheaper. Published Author House, 2004.

[9]. J., Musa. A theory of software reliability and its application.
IEEE Transactions on Software Engineering, pages 312–327,
1975.

[10]. JY., Park, SU., Lee and JH., Park, Neural network modeling
for software reliability prediction from failure time data.
Journal of Electrical Engineering and Information Science
4:533–538, 1999.

[11]. K.Y., Cai, C.Y., Wen, and M.L., Zhang, A critical review on
software reliability modeling. Reliability Engineering and
System Safety 32 (3), 357–371, 1991

[12]. L. Tian and A. Noore: Computational Intelligence Methods in
Software Reliability Prediction, in Computational Intelligence
in Reliability Engineering (SCI) 39, 375–398, 2007.

[13]. L., Tian, and A., Noore, Evolutionary neural network
modeling for software cumulative failure time prediction.
Reliability Engineering and System Safety 87, 45–51, 2005.

[14]. L., Tian, and A., Noore, On-line prediction of software
reliability using an evolutionary connectionist model. The
Journal of Systems and Software 77, 173–180, 2005.

[15]. M. Xie. Software Reliability Models - Past, Present and
Future. In N. Limnios and M. Nikulin (Eds). Recent Advances
in Reliability Theory: Methodology, Practice and Inference,
pages 323–340, 2002.

[16]. M., Mitchell, An Introduction to Genetic Algorithms, MIT
Press, Cambridge, Massachusetts, 1996.

[17]. N. Raj Kiran, V. Ravi, Software Reliability Prediction by Soft
Computing Techniques, J. Syst. Software, 2007.

[18]. N., Karunanithi, D., Whitley, and Y., Maliya, Prediction of
software reliability using connectionist models. IEEE
Transactions on Software Engineering 18, 563–574, 1992

[19]. P. F., Pai, and W.C., Hong, Software reliability forecasting by
support vector machines with simulated vector machines with
simulated annealing algorithms. The Journal of Systems and
Software 79, 747-755, 2006

[20]. S., Aljahdali A., Sheta and R., Rine, Predicting accumulated
faults in software testing process using radial basis function
network models. In 17th International Conference on
Computers and Their Applications (CATA), Special Session
on Intelligent Software Reliability, San Francisco, California,
USA, 2002.

[21]. S., Aljahdali D., Rine and A., Sheta, Prediction of software
reliability: A comparison between regression and neural
network nonparametric models. In ACS/IEEE International
Conference on Computer Systems and Applications
(AICCSA 2001), Beirut, Lebanon, pp.470–473, 2001.

[22]. S., Dick and A., Kandel, Computational Intelligence in
Software Quality Assurance, World Scientific Publishing Co.
2005.

[23]. S., Hashem, B., Schmeiser, and Y. Yih, Optimal Linear
Combinations of Neural Networks: An Overview. Tech. Rep.
SMS93-19, School of Industrial Engineering, Purdue
University. (Proceedings of the 1994 IEEE International
Conference in Neural Networks, 1993.

[24]. S., Yamada, Software reliability models and their
applications: A survey. In International Seminar on Software
Reliability of Man-Machine Systems - Theories Methods and
Information Systems Applications - August 17-18, Kyoto
University, Kyoto, Japan, 2000.

[25]. S.L., Ho, M., Xie, and T.N., Goh, A study of connectionist
models for software reliability prediction. Computers and
Mathematics with Applications 46 (7), 1037–1045, 2003.

[26]. T. G. Dietterich. Ensemble Methods in Machine Learning. In
J. Kittler and F. Roli, editors, Multiple Classifier Systems,
volume 1857 of Lecture Notes in Computer Science, Cagliari,
Italy, Springer, pp. 1–15, 2000.

[27]. Y., Su, and C.,Huang, Neural Network-Based
Approaches for Software Reliability Estimation using
Dynamic Weighted Combinational Models. Journal of
Systems and Software 80 (4), 606–615, 2006.

298

 7

FIGURE II. ACTUAL AND ESTIMATED FAULTS FOR REAL TIME AND CONTROL APPLICATION

FIGURE III. PREDICTION ERROR FOR REAL TIME AND CONTROL APPLICATION TRAINING SET

FIGURE IV. LEARNING RATE OF GA FOR REAL TIME AND CONTROL APPLICATION

299

 8

FIGURE V. ACTUAL AND ESTIMATED FAULTS FOR REAL TIME AND CONTROL APPLICATION TEST SET

FIGURE VI. PREDICTION ERROR FOR REAL TIME AND CONTROL APPLICATION TEST SET

300

